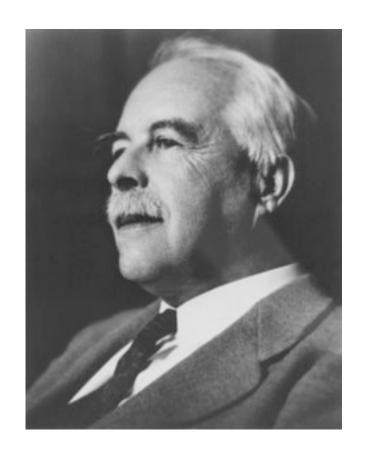
Lecture 9 February 4, 2019

Lewis Structures

Hybrid Orbitals


Shapes of Molecules (Common Stereochemistries in Main Group Compounds)

Two Electrons Shared between Two Atoms Make a Bond! G.N. Lewis

(G. = GilbertN. = NewtonLewis as in Lewis Structures!)

Lewis Structures and VSEPR:

Workshop Study

Simple Review videos

https://www.youtube.com/watch?v=1ZlnzyHahvo https://www.youtube.com/watch?v=xNYiB 2u8J4

Rules for Oxidation State Assignment

Rule 1: The oxidation number of an element in its free (uncombined) state is zero — for example, Al(s) or Zn(s). This is also true for elements found in nature as *diatomic* (two-atom) elem and for sulfur, found as:

Rule 2: The oxidation number of a *monatomic* (one-atom) ion is the same as the charge on the ion

Rule 3: The sum of all oxidation numbers in a neutral compound is zero. The sum of all oxidation numbers in a *polyatomic* (many-atom) ion is equal to the charge on the ion

that may have multiple oxidation states, if the other atoms in the ion have known oxidation numbers.

Rule 4: The oxidation number of an alkali metal (IA family) in a compound is +1;

the oxidation number of an alkaline earth metal (IIA family) in a compound is +2.

Rule 5: The oxidation number of oxygen in a compound is usually -2. If, however, the oxygen is in a class of compounds called *peroxides* (for example, hydrogen peroxide), then the oxygen has an oxidation number of -1.

Rule 6: The oxidation state of hydrogen in a compound is usually +1.

If the hydrogen is part of a binary metal hydride (compound of hydrogen and some metal), then the oxidation state of hydrogen is -1.

Rule 7: The oxidation number of fluorine is always -1.

Chlorine, bromine, and iodine usually have an oxidation number of -1, unless they're in combination with an oxygen or fluorine.

The Pauling Electroneutrality Principle:

Pauling's principle of **electroneutrality** states that each atom in a stable substance has a charge close to zero. It was formulated by Linus **Pauling** in 1948 and later revised.

Formal Charges: Keeping track of electrons leading to charge separation in a molecule:

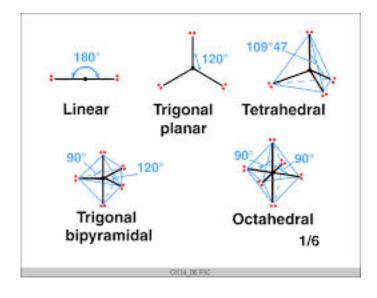
Formal Charge

Lewis Structures: Do a Zillion.

Rules:

- 1) Octet Rule "Rules" > 90% time
- 1) The more electropositive element typically goes in center --- examples of exceptions: CH₄, NH₃, H₂O; Polyphosphates!
- 2) Look for Resonance forms and choose best according to Pauling's Electroneutrality Principle: smallest and least separation of formal charges

Can Orbital Overlap Predict Molecular Shapes?


Consider: HF, H₂S, PH₃ Bonds of all can be ascribed to overlap of 3p valence orbital on F, S, or P with 1s H orbital

But: H₂O, NH₃, CH₄!!!

Need Hybrid orbitals: sp³

Valence Shell Electron Pair Repulsion model

- ❖Is based on the number of regions of <u>high electron density</u> around the central atom
 Electron density: The number of electrons in a unit volume.
- Can be used to predict the structure of a molecule
- Does fail in some cases; models are oversimplifications

Remember the following additional things:

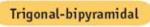
- Multiple bonds behave as a single electron pair bond for the purpose of VSEPR.
- Order of repulsion between lone pair and lone pair (lp - lp), lone pair and bonding pair (lp- lp), and bonding pair and bonding pair (bp- bp) is lp - lp >> lp- bp >bp -bp.

when a molecule has lone pairs of electrons, the bonding electron pairs are pushed closer and thus the bond angle is decreased.

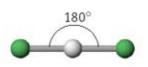
https://www.youtube.com/watch?v=1ZlnzyHahvo
https://www.youtube.com/watch?v=xNYiB 2u8J4

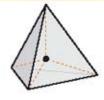
In TBP, lone pairs go in Equatorial positions rather Than axial positions.
This minimizes repulsions.

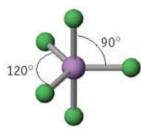
www.youtube.com/watch?v=nxebQZUVvTg

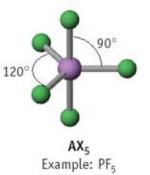

http://ocw.mit.edu/courses/chemistry/5-111principles-of-chemical-science-fall-2008/videolectures/lecture-13/

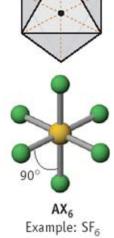
https://www.youtube.com/watch?v=1ZlnzyHahvo
https://www.youtube.com/watch?v=xNYiB 2u8J4

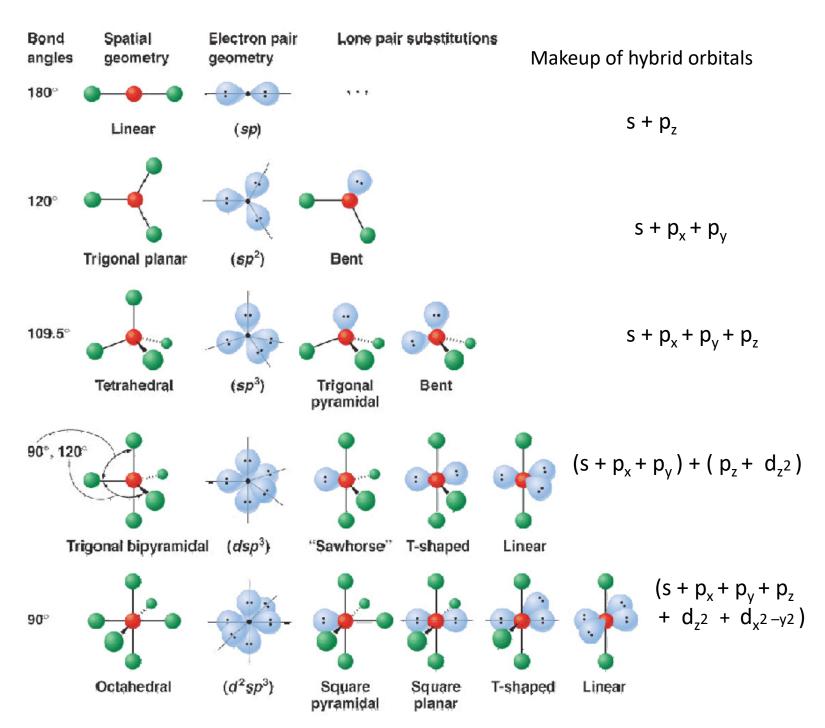

Linear



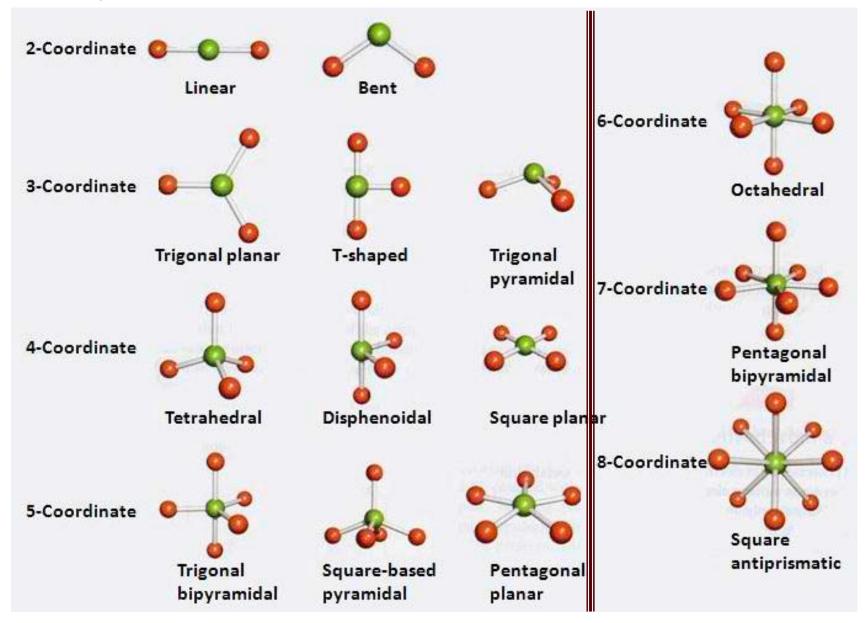




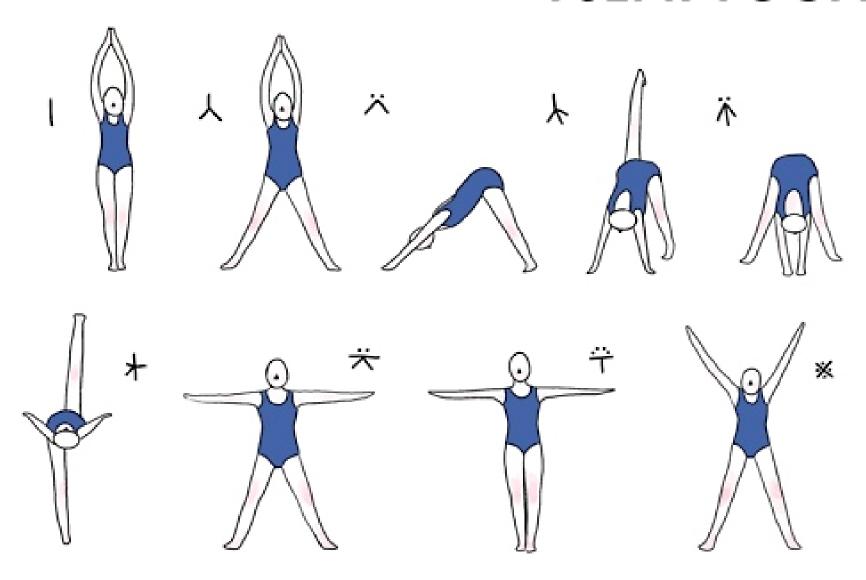

Trigonal-planar


AX₂ Example: BeF₂

AX₃ Example: BF₃


120°

AX₄ Example: CF₄


109.5°

Descriptions of geometries in mono-centric molecules: It is where The atoms are. . .

VSEPR YOGA

VSEPR and the AXE Description of Electron Arrangements

Molecule Type	Shape	Electron arrangement [†]	Geometry [‡]	Examples
AX ₂ E ₀	Linear			BeCl ₂ , HgCl ₂ , CO ₂
AX ₃ E ₀	Trigonal planar			BF ₃ , CO ₃ ²⁻ , NO ₃ , SO ₃
AX ₄ E ₀	Tetrahedral			CH ₄ , PO ₄ ³⁻ , SO ₄ ²⁻ , CIO ₄ ⁻ , TiCl ₄ , XeO ₄
AX ₅ E ₀	Trigonal bipyramidal			PCI ₅
AX ₆ E ₀	Octahedral	3		SF ₆ , WCI ₆

VSEPR Theory

# of Atom s	# of electron pairs	Formula Type	Geometry	Bond Angle	Examples	Hybridiza tion	Structure
3	0	AB ₂	Linear	180	CO ₂ , CS ₂ , BeH ₂		0.000
3	1	AB ₂	Bent	117.5	GeCl ₂ , SO ₂ , NO ⁻ ₂	sp ²	~
3	2	AB ₂	Bent	105	H ₂ O, H ₂ S	sp ³	~
4	0	AB ₃	Trigonal planar 🌡	120	BCl ₃ , AlBr ₃ ,	sp ²	3
4	1	AB ₃	Pyramidal	107	NH ₃ , PCl ₃ , AsBr ₃	sp ³	3
4	2	AB ₃ (Inter halogen)	T-shaped	90, 180	ICl ₃ , BrF ₃ ,	sp³d	-
5	0	AB ₄	Tetrahedron	109.5	CCl ₄ , CH ₄ , SiBr ₄	sp ³	*
5	1	AB ₄	Distorted tetrahedron (Seesaw)		SF ₄ , SB _{r₄,} SeCl ₄	sp³d	350
5	2	AB ₄	Square planar	90, 180	XeF ₄ ,	sp³d²	-
6	0	AB ₅	rigonal bipyramidal	90, 180, 120	PCI ₅ ,	sp ³ d	*
6	1	AB ₅ (Inter halogen)	Square pyramid		CIF ₅ , ICI ₅ , IBr ₅	sp³d²	al.
7	0	AB ₆	Octahedron	90, 180	SF ₆	sp³d²	

VSEPR Theory

# of Atom s	# of electron pairs	Formula Type	Geometry	Bond Angle	Examples	Hybridiza tion	Structure
3	0	AB₂	Linear	180	CO ₂ , CS ₂ , BeH ₂		
3	1	AB ₂	Bent	117.5	GeCl ₂ , SO ₂ , NO [*] 2	sp ²	
3	2	AB ₂	Bent	105	H₂O, H₂S	sp ³	
4	0	AB ₃	Trigonal planar 💪	120	BCI ₃ , AIBr ₃ ,	sp ²	}
4	1	AB ₃	Pyramidal	107	NH ₃ , PCl ₃ , AsBr ₃	sp ³	3
4	2	AB ₃ (Inter halogen)	T-shaped	90, 180	ICl ₃ , BrF ₃ ,	sp³d	7

5	0	AB ₄	Tetrahedron	109.5	CCI ₄ , CH ₄ , SiBr ₄	sp ³	-
5	1	AB ₄	Distorted tetrahedron (Seesaw)		SF ₄ , SB _{r₄} , SeCl ₄	sp³d	350
5	2	AB ₄	Square planar	90, 180	XeF ₄ ,	sp ³ d ²	3
6	0	AB ₅	rigonal bipyramidal	90, 180, 120	PCI ₅ ,	sp³d	
6	1	AB ₅ (Inter halogen)	Square pyramid		CIF ₅ , ICI ₅ , IBr ₅	sp ³ d ²	ميان
7	0	AB ₆	Octahedron	90, 180	SF ₆	sp ³ d ²	