Lecture 9 February 4, 2019 Lewis Structures Hybrid Orbitals Shapes of Molecules (Common Stereochemistries in Main Group Compounds) ## Two Electrons Shared between Two Atoms Make a Bond! G.N. Lewis (G. = GilbertN. = NewtonLewis as in Lewis Structures!) Lewis Structures and VSEPR: Workshop Study Simple Review videos https://www.youtube.com/watch?v=1ZlnzyHahvo https://www.youtube.com/watch?v=xNYiB 2u8J4 #### **Rules for Oxidation State Assignment** **Rule 1:** The oxidation number of an element in its free (uncombined) state is zero — for example, Al(s) or Zn(s). This is also true for elements found in nature as *diatomic* (two-atom) elem and for sulfur, found as: Rule 2: The oxidation number of a *monatomic* (one-atom) ion is the same as the charge on the ion **Rule 3:** The sum of all oxidation numbers in a neutral compound is zero. The sum of all oxidation numbers in a *polyatomic* (many-atom) ion is equal to the charge on the ion that may have multiple oxidation states, if the other atoms in the ion have known oxidation numbers. Rule 4: The oxidation number of an alkali metal (IA family) in a compound is +1; the oxidation number of an alkaline earth metal (IIA family) in a compound is +2. **Rule 5:** The oxidation number of oxygen in a compound is usually -2. If, however, the oxygen is in a class of compounds called *peroxides* (for example, hydrogen peroxide), then the oxygen has an oxidation number of -1. Rule 6: The oxidation state of hydrogen in a compound is usually +1. If the hydrogen is part of a binary metal hydride (compound of hydrogen and some metal), then the oxidation state of hydrogen is -1. **Rule 7:** The oxidation number of fluorine is always -1. Chlorine, bromine, and iodine usually have an oxidation number of -1, unless they're in combination with an oxygen or fluorine. The Pauling Electroneutrality Principle: **Pauling's principle** of **electroneutrality** states that each atom in a stable substance has a charge close to zero. It was formulated by Linus **Pauling** in 1948 and later revised. Formal Charges: Keeping track of electrons leading to charge separation in a molecule: #### **Formal Charge** ### Lewis Structures: Do a Zillion. #### Rules: - 1) Octet Rule "Rules" > 90% time - 1) The more electropositive element typically goes in center --- examples of exceptions: CH₄, NH₃, H₂O; Polyphosphates! - 2) Look for Resonance forms and choose best according to Pauling's Electroneutrality Principle: smallest and least separation of formal charges ### Can Orbital Overlap Predict Molecular Shapes? Consider: HF, H₂S, PH₃ Bonds of all can be ascribed to overlap of 3p valence orbital on F, S, or P with 1s H orbital But: H₂O, NH₃, CH₄!!! Need Hybrid orbitals: sp³ Valence Shell Electron Pair Repulsion model - ❖Is based on the number of regions of <u>high electron density</u> around the central atom Electron density: The number of electrons in a unit volume. - Can be used to predict the structure of a molecule - Does fail in some cases; models are oversimplifications ### Remember the following additional things: - Multiple bonds behave as a single electron pair bond for the purpose of VSEPR. - Order of repulsion between lone pair and lone pair (lp - lp), lone pair and bonding pair (lp- lp), and bonding pair and bonding pair (bp- bp) is lp - lp >> lp- bp >bp -bp. when a molecule has lone pairs of electrons, the bonding electron pairs are pushed closer and thus the bond angle is decreased. https://www.youtube.com/watch?v=1ZlnzyHahvo https://www.youtube.com/watch?v=xNYiB 2u8J4 In TBP, lone pairs go in Equatorial positions rather Than axial positions. This minimizes repulsions. #### www.youtube.com/watch?v=nxebQZUVvTg http://ocw.mit.edu/courses/chemistry/5-111principles-of-chemical-science-fall-2008/videolectures/lecture-13/ https://www.youtube.com/watch?v=1ZlnzyHahvo https://www.youtube.com/watch?v=xNYiB 2u8J4 # Linear Trigonal-planar **AX₂** Example: BeF₂ AX₃ Example: BF₃ 120° **AX**₄ Example: CF₄ 109.5° # Descriptions of geometries in mono-centric molecules: It is where The atoms are. . . ## **VSEPR YOGA** ### VSEPR and the AXE Description of Electron Arrangements | Molecule Type | Shape | Electron arrangement [†] | Geometry [‡] | Examples | |--------------------------------|----------------------|-----------------------------------|-----------------------|--| | AX ₂ E ₀ | Linear | | | BeCl ₂ , HgCl ₂ , CO ₂ | | AX ₃ E ₀ | Trigonal planar | | | BF ₃ , CO ₃ ²⁻ , NO ₃ , SO ₃ | | AX ₄ E ₀ | Tetrahedral | | | CH ₄ , PO ₄ ³⁻ , SO ₄ ²⁻ , CIO ₄ ⁻ , TiCl ₄ , XeO ₄ | | AX ₅ E ₀ | Trigonal bipyramidal | | | PCI ₅ | | AX ₆ E ₀ | Octahedral | 3 | | SF ₆ , WCI ₆ | #### VSEPR Theory | # of
Atom
s | # of
electron
pairs | Formula
Type | Geometry | Bond
Angle | Examples | Hybridiza
tion | Structure | |-------------------|---------------------------|---------------------------------------|-----------------------------------|--------------------|---|-------------------|-----------| | 3 | 0 | AB ₂ | Linear | 180 | CO ₂ , CS ₂ ,
BeH ₂ | | 0.000 | | 3 | 1 | AB ₂ | Bent | 117.5 | GeCl ₂ , SO ₂ ,
NO ⁻ ₂ | sp ² | ~ | | 3 | 2 | AB ₂ | Bent | 105 | H ₂ O, H ₂ S | sp ³ | ~ | | 4 | 0 | AB ₃ | Trigonal planar 🌡 | 120 | BCl ₃ , AlBr ₃ , | sp ² | 3 | | 4 | 1 | AB ₃ | Pyramidal | 107 | NH ₃ , PCl ₃ ,
AsBr ₃ | sp ³ | 3 | | 4 | 2 | AB ₃
(Inter
halogen) | T-shaped | 90,
180 | ICl ₃ , BrF ₃ , | sp³d | - | | 5 | 0 | AB ₄ | Tetrahedron | 109.5 | CCl ₄ , CH ₄ ,
SiBr ₄ | sp ³ | * | | 5 | 1 | AB ₄ | Distorted tetrahedron
(Seesaw) | | SF ₄ , SB _{r₄,}
SeCl ₄ | sp³d | 350 | | 5 | 2 | AB ₄ | Square planar | 90,
180 | XeF ₄ , | sp³d² | - | | 6 | 0 | AB ₅ | rigonal bipyramidal | 90,
180,
120 | PCI ₅ , | sp ³ d | * | | 6 | 1 | AB ₅
(Inter
halogen) | Square pyramid | | CIF ₅ , ICI ₅ ,
IBr ₅ | sp³d² | al. | | 7 | 0 | AB ₆ | Octahedron | 90,
180 | SF ₆ | sp³d² | | ### VSEPR Theory | # of
Atom
s | # of
electron
pairs | Formula
Type | Geometry | Bond
Angle | Examples | Hybridiza
tion | Structure | |-------------------|---------------------------|---------------------------------------|-------------------|---------------|--|-------------------|-----------| | 3 | 0 | AB₂ | Linear | 180 | CO ₂ , CS ₂ ,
BeH ₂ | | | | 3 | 1 | AB ₂ | Bent | 117.5 | GeCl ₂ , SO ₂ ,
NO [*] 2 | sp ² | | | 3 | 2 | AB ₂ | Bent | 105 | H₂O, H₂S | sp ³ | | | 4 | 0 | AB ₃ | Trigonal planar 💪 | 120 | BCI ₃ , AIBr ₃ , | sp ² | } | | 4 | 1 | AB ₃ | Pyramidal | 107 | NH ₃ , PCl ₃ ,
AsBr ₃ | sp ³ | 3 | | 4 | 2 | AB ₃
(Inter
halogen) | T-shaped | 90,
180 | ICl ₃ , BrF ₃ , | sp³d | 7 | | 5 | 0 | AB ₄ | Tetrahedron | 109.5 | CCI ₄ , CH ₄ ,
SiBr ₄ | sp ³ | - | |---|---|---------------------------------------|-----------------------------------|--------------------|--|--------------------------------|------| | 5 | 1 | AB ₄ | Distorted tetrahedron
(Seesaw) | | SF ₄ , SB _{r₄} ,
SeCl ₄ | sp³d | 350 | | 5 | 2 | AB ₄ | Square planar | 90,
180 | XeF ₄ , | sp ³ d ² | 3 | | 6 | 0 | AB ₅ | rigonal bipyramidal | 90,
180,
120 | PCI ₅ , | sp³d | | | 6 | 1 | AB ₅
(Inter
halogen) | Square pyramid | | CIF ₅ , ICI ₅ ,
IBr ₅ | sp ³ d ² | ميان | | 7 | 0 | AB ₆ | Octahedron | 90,
180 | SF ₆ | sp ³ d ² | |